

2 kB

0.015 W

128 kB

0.045 W (with RF

Algorithm-Hardware Co-optimization for State-of-the-Art Optimal **Control Solvers on Embedded SoC**

Kris Shengjun Dong, Dima Nikiforov, Minh Nguyen, Borivoje Nikolic, Sophia Shao

Overview

Real world robots with embedded SoCs are often computationally constrained and can not utilize onboard optimal control algorithms such as Model Predictive Control (MPC). We apply algorithm-hardware co-optimization for GEMV operations to accelerate MPC for these cases.

Range of Robotic Platforms ATtiny20 4-8 MHz ATmega1284RF2 STM32F405 RP2040 STM32F765 ESP32-WROOM-32D 16MHz 168 MHz 133 MHz Dual-Core 216 MHz Dual-Core 240MHz Dual-Core 8-bit MCL 8-bit MUC 32-bit M4 MCU 32-bit LX7 MCU 32-bit M0+ MCU 32-bit M7 MCU 128 B 16 kB 264 kB 512 k 512 kB 196 kB

1 MB

0.15 W

2 ME

0.15 W

2 MB

0.5 W

16 MB

0.5-1 W

Target Workload

primal update : $x^+ = \arg \min \mathcal{L}_A(x, z, \lambda),$ slack update : $z^+ = \arg\min_{z} \mathcal{L}_A(x^+, z, \lambda),$ dual update : $\lambda^+ = \lambda + \rho(x^+ - z^+)$,

Methodology

Spike Evaluation

FireSim RTL Evaluation

Performance's Impact on Quality of Flight

Conclusion

1.48734

0.77418

0.73453

- Initially mapping dynamic GEMV operations to Gemmini results in worse performance than Eigen CPU implementation
- Hand-tuned unrolling and optimizations outperforms CPU

Future Work

- Implementing HW features to support fine-grained GEMM/GEMV operations
- Codegen/Compiler support for end-user • utilization of optimized kernels

Contact Information

Kris Shengjun Dong Dima Nikiforov Minh Nguyen

Tracking Error

krisdong@berkeley.edu vnikiforov@berkeley.edu minh02@berkeley.edu