
Enabling Configurable GEMV Support in Gemmini
Kris Shengjun Dong, Minh Nguyen, Leena Elzeiny, Sophia Shao

Overview Methodology

Weight Stationary

Output Stationary
Performance Evaluation

Contact Information
Kris Shengjun Dong krisdong@berkeley.edu

Minh Nguyen minh02@berkeley.edu

Leena Elzeiny lelzeiny@berkeley.edu

Area Evaluation

Need DIM+1 scratchpad banks to load in DIM^2 elements of A
in parallel. Extra scratchpad is used to load in weights and
biases in parallel with A.

Optimized vector storage to take less space in
scratchpad. Left is previous, right is current

Scratchpad Changes

Tile

Tile

Tile

Approach

Issue with Systolic Array Gemmini

1/DIM Utilization

1/DIM Potential Utilization 100% Potential Utilization

GEMV and GEMM forms a backbone for a variety of
dense linear algebra operations that are essential for
robotics, LLM and machine learning workloads,
interleaved with other matrix operations

• Implement GEMV support in Gemmini for both
weight and output stationary dataflows

• Increase bandwidth in both the processing
elements and scratchpad accesses

Achieved around 5x speedup compared to original Gmmini and ~2.34x
speedup compared to Saturn on a sweep of matrix and vector sizes

• Memory Bandwidth: Instead of adding additional banks,
consider a wider bank

• Additional Compute Units: Instead of software transpose,
consider using the HW transposer

• Add FSM to support GEMV coarse grained instructions
• Smarter reservation station
• Codegen/Compiler support for end-user utilization of

optimized kernels

May 2024

Ongoing Work

