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Area Evaluation

Need DIM+1 scratchpad banks to load in DIM^2 elements of A 
in parallel. Extra scratchpad is used to load in weights and 
biases in parallel with A.

Optimized vector storage to take less space in 
scratchpad. Left is previous, right is current
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Approach

Issue with Systolic Array Gemmini

1/DIM Utilization 

1/DIM Potential Utilization 100% Potential Utilization

GEMV and GEMM  forms a backbone for a variety of 
dense linear algebra operations that are essential for 
robotics, LLM and machine learning workloads, 
interleaved with other matrix operations

• Implement GEMV support in Gemmini for both 
weight and output stationary dataflows

• Increase bandwidth in both the processing 
elements and scratchpad accesses 

Achieved around 5x speedup compared to original Gmmini and ~2.34x 
speedup compared to Saturn on a sweep of matrix and vector sizes

• Memory Bandwidth: Instead of adding additional banks, 
consider a wider bank

• Additional Compute Units: Instead of software transpose, 
consider using the HW transposer

• Add FSM to support GEMV coarse grained instructions 
• Smarter reservation station
• Codegen/Compiler support for end-user utilization of 

optimized kernels
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